Solitons are generated in an anharmonic linear lattice in which neighbouring atoms interact through a Morse potential by giving either a strong initial impulse or a large displacement to an end atom. Studies on the variation of the characteristic properties of the soliton with the strength of the initial pulse show that the velocity and the amplitude of the soliton increase with the strength of the initial impulse, but below a certain critical value for the initial impulse, only an oscillatory tail is generated. It is shown that when a defect is present in the lattice, a localised mode appears at the site of the defect and additional solitons travelling forward or even backwards, are generated. When two solitons collide at a defect region, they reemerge but leave a localised mode at the site of the defect. If an initial velocity is imparted to a particular particle, synchronously with the crossing of the particle by the soliton, a localised mode emerges at the site of the particle and additional solitons are also generated. When a soliton moves from a denser to a rarer medium, a strong localised pulse is created near the region of the density discontinuity and additional solitons appear; and further a weak oscillatory tail is left behind in the denser medium. On the other hand, if a soliton moves from a rarer to a denser medium, it is reflected back and a small localised mode is generated at the site of the density discontinuity. The variation of amplitude of the soliton with the velocity of propagation is also studied.
Read full abstract