ABSTRACTDeposition conditions that provided low absorption related to both band tail and deep localized states have been found for both materials Ge:H and Si1YGeY:H. Phosphorous incorporation on Si0.01Ge0.99:H films and boron incorporation on Ge:H films were deposited by low frequency plasma-enhanced chemical vapour deposition (LF PECVD). The phosphorous incorporation in solidphase was observed to preferential with the increase of the doping in the gas phase to 2.5 %, and 2.5% to 4% was observed preferential Si0.01Ge0.99 film, boron incorporation in solid phase increase linearly with the increase of the doping gas phase. The content of solid phase was characterized by Secondary ion mass spectrometry (SIMS) profiling. Hydrogen concentration in the films was determined from Fourier transform infrared spectroscopy (FTIR) and SIMS measurements. Optical measurements provided optical gap, localized states, and band tail. A significant reduction of both band tail and deep localized states were observed at boron incorporation in solid phase = 0.004% on Ge:H films and the same were observed at phosphorous incorporation in solid phase = 0.29% on Si0.01Ge0.99:H films.