To understand the influence of the Fukushima accident on the Northwest Pacific, the distributions and transportations of 134Cs and 137Cs in the seawater in the Northwest Pacific in May and September 2015 were studied. The data showed that the Fukushima-derived 134Cs and 137Cs at some stations can still be distinguished from background level ~ 4years later. On the whole, the activities of 137Cs and 134Cs in seawater were decreasing from May to Sep 2015. But the increased inventories and the surface activities of 137Cs imply that there has ever been an extra 137Cs from offshore water transported to this study area (from 31° N to 27° N, 145° E to 152.5° E) in May 2015. The average activities of 137Cs in subtropical gyre area in south of KE were the highest and the least were to the east of Luzon Strait in 2015. In vertical direction, 137Cs in subtropical gyre area were mainly distributed at 100 ~ 500m layer and 137Cs only at 500m layer in this area showed an increasing trend from May to Sep 2015 which reflects more 137Cs were still penetrating to deeper layer of 500m from upper water. But they were almost not found below 1000m layer. It was associated with the subsurface transport of radiocesiums by Northwest Pacific Mode Water (NPMW) and the diffusion of mesoscale eddy. Different distribution characteristics of 137Cs existed between north of KE and south of KE. The low-temperature-low-salinity water mass likely to be the first Oyashio Intrusion was the main factor that resulted in higher 137Cs appearing at the upper 100m layers in north of KE.