Coal burst occurrence on roadways has always been a major concern in deep underground coal mines, especially under complex geological conditions. To evaluate the effect of faulting on coal burst, the stress concentration in the vicinity a reverse fault was analysed considering the geological history of the fault formation where high horizontal stresses led to the initiation and propagation of the reverse fault. Various in situ stresses and mechanical parameters of the fault, including the ratio of horizontal stress to vertical stress were used to analyse the state of fault. Numerical modelling was conducted using two and three dimensional distinct element models (UDEC and 3DEC) based on a geotechnical conditions of an Australian underground coal mine. The formation process of reverse fault was simulated to evaluate the stress characteristics in the coal seam and the immediate roof and floor near the fault. The results show that, both the horizontal and vertical stress in footwall were higher than those in hanging wall after the formation of the reverse fault. The stress condition near fault was complicated due to complex geology in the coal measures, and the vertical stress peaked in the footwall at a distance of about 160 m from the fault. When a roadway was excavated, stress concentration occurred at both the roadway face and ribs, which reached as high as 38 MPa in the ribs at a depth of 500 m. This will significantly elevate the risk of dynamic instability of the roadway such as coal burst. The stress concentration zone in the footwall can be considered as a hazardous zone near the reverse fault. This study provides a general reference for analysis of roadway stability affected by faults.
Read full abstract