AbstractScientists have observed the surface expression of creep events along the San Andreas Fault since the 1960s. However, the evolution of slip at depth has been examined relatively little. So here we probe that deep slip by analyzing strain observations just before and during hours‐ to day‐long creep events at the northern end of the creeping section of the San Andreas Fault. We identify 71 strain offsets that are likely produced by few‐hour bursts of slip at depth. Then, we grid search to determine the location, depth, and magnitude of these slip bursts. We find that the slip bursts occur at a range of along‐strike locations, from 0 to 7 km away from the surface slip observations. Slip occurs at depths from 0 to 10 km; 42%–55% of the bursts are likely below 4 km depth. The bursts typically have moments equivalent to Mw 3.2–4.1 earthquakes. These findings suggest that creep events are not just small shallow events; they are relatively large events that nucleate at significant depths and could play a prominent role in the slip dynamics of the creeping section.
Read full abstract