The subsidence of the outer plexiform layer (OPL) is an important imaging biomarker on optical coherence tomography (OCT) associated with early outer retinal atrophy and a risk factor for progression to geographic atrophy in patients with intermediate age-related macular degeneration (AMD). Deep neural networks (DNNs) for OCT can support automated detection and localization of this biomarker. The method predicts potential OPL subsidence locations on retinal OCTs. A detection module (DM) infers bounding boxes around subsidences with a likelihood score, and a classification module (CM) assesses subsidence presence at the B-scan level. Overlapping boxes between B-scans are combined and scored by the product of the DM and CM predictions. The volume-wise score is the maximum prediction across all B-scans. One development and one independent external data set were used with 140 and 26 patients with AMD, respectively. The system detected more than 85% of OPL subsidences with less than one false-positive (FP)/scan. The average area under the curve was 0.94 ± 0.03 for volume-level detection. Similar or better performance was achieved on the independent external data set. DNN systems can efficiently perform automated retinal layer subsidence detection in retinal OCT images. In particular, the proposed DNN system detects OPL subsidence with high sensitivity and a very limited number of FP detections. DNNs enable objective identification of early signs associated with high risk of progression to the atrophic late stage of AMD, ideally suited for screening and assessing the efficacy of the interventions aiming to slow disease progression.
Read full abstract