To address the phase disturbance issue faced by sensor arrays in practical applications, a cascaded deep convolutional neural network structure is proposed to achieve direction-of-arrival (DOA) estimation for motion coprime arrays. Firstly, the synthesized covariance matrix obtained after motion is inputted into the first-level network for estimating the phase disturbance matrix. Then, we analyze the impact of phase perturbation on the synthesized covariance matrix and utilize the estimated disturbance phase to obtain an undisturbed synthesized covariance matrix. Finally, after phase compensation, the synthesized covariance matrix performs DOA estimation through the second-level network. Furthermore, to acquire three times the virtual unique lags of the coprime array, the synthesis condition about moving distance and unique lags is derived. The proposed method is shown to be effective and superior through the experiment results.