Abstract
Deep convolutional neural networks (DCNNs) have recently emerged as a powerful tool to deliver breakthrough performances in various image analysis and processing applications. However, DCNNs lack a strong theoretical foundation and require massive amounts of training data. More recently, the deep scattering network (DSN), a variant of DCNNs, has been proposed to address these issues. DSNs inherit the hierarchical structure of DCNNs, but replace data-driven linear filters with predefined fixed multi-scale wavelet filters, which facilitate an in-depth understanding of DCNNs and also offer the state-of-the-art performance in image classification. Unfortunately, DSNs suffer from a major drawback: they are suitable for stationary image textures but not non-stationary image textures, since 2D wavelets are intrinsically linear translation-invariant filters in the Fourier transform domain. The objective of this paper is to overcome this drawback using the fractional wavelet transform (FRWT) which can be viewed as a bank of linear translation-variant multi-scale filters and thus may be well suited for non-stationary texture analysis. We first propose the fractional wavelet scattering transform (FRWST) based upon the FRWT. Then, we present a generalized structure for the DSN by cascading fractional wavelet convolutions and modulus operators. Basic properties of this generalized DSN are derived, followed by a fast implementation of the generalized DSN as well as their practical applications. The theoretical derivations are validated via computer simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.