Parkinson's disease (PD) is linked with metabolic risk factors including body mass index (BMI), fasting blood glucose (FBG), cholesterol levels, and triglycerides (TG). The extent to which these factors affect motor symptoms, depression, and sleep problems in PD, as well as their role in determining the success of deep brain stimulation (DBS) therapy, is yet to be fully understood. This study delved into the effects of metabolic risk factors like BMI, FBG, cholesterol, and TG on the outcomes of DBS in treating PD-related depression and sleep disturbances, across both mouse models and human subjects. DBS showcased noticeable betterment in depression and sleep perturbations in both PD-afflicted mice and patients. High-sugar-high-fat diet aggravates MPTP-induced depression and sleep disorders in mice. PD-afflicted individuals presenting with depressive and sleep disorders demonstrated elevated metrics of BMI, FBG, blood cholesterol, and TG. Remarkably, these metrics bore considerable adverse influences on the efficiency of DBS in ameliorating depression and sleep issues, yet spared motor symptoms. The favorable impacts of DBS persisted for approximately 6 years, post which a significant decline was noted. Importantly, our translational evidence from both murine controls and patient cohorts indicated that antihyperglycemic and antihyperlipidemic therapies bolstered the efficacy of DBS in mitigating PD-related depression and sleep disturbances, without impinging upon motor functions in patients. In summary, this research emphasizes that DBS is a powerful treatment option for depression and sleep issues in PD, with its success influenced by metabolic risk factors. It further suggests that incorporating treatments for high blood sugar and cholesterol can enhance the efficacy of DBS in treating depression and sleep disturbances in PD, without impacting motor symptoms, highlighting the importance of metabolic risk management in PD patients receiving DBS.
Read full abstract