BackgroundAdvances in neurotechnologies are revolutionizing our understanding of complex neural circuits and enabling new treatments for disorders of the human brain. In the vestibular system, electromagnetic stimuli can now modulate vestibular reflexes and sensations of self-motion by artificially stimulating the labyrinth, cerebellum, cerebral cortex, and their connections. ObjectiveIn this narrative review, we describe evolving neuromodulatory techniques including magnetic vestibular stimulation (MVS), deep brain stimulation (DBS), transcranial magnetic stimulation (TMS), and transcranial direct-current stimulation (tDCS) and discuss current and potential future application in the field of neuro-otology. ResultsMVS triggers both vestibular nystagmic (persistent) and perceptual (lasting ∼1 min) responses that may serve as a model to study central adaptational mechanisms and pathomechanisms of hemispatial neglect. By systematically mapping DBS electrodes, targeted stimulation of central vestibular pathways allowed modulating eye movements, vestibular heading perception, spatial attention and graviception, resulting in reduced anti-saccade error rates and hypometria, improved heading discrimination, shifts in verticality perception and transiently decreased spatial attention. For TMS/tDCS treatment trials have demonstrated amelioration of vestibular symptoms in various neuro-otological conditions, including chronic vestibular insufficiency, Mal-de-Debarquement and cerebellar ataxia. ConclusionNeuromodulation has a bright future as a potential treatment of vestibular dysfunction. MVS, DBS and TMS may provide new and sophisticated, customizable, and specific treatment options of vestibular symptoms in humans. While promising treatment responses have been reported for TMS/tDCS, treatment trials for vestibular disorders using MVS or DBS have yet to be defined and performed.
Read full abstract