The present study was carried out to investigate the cardiovascular effects of centrally administered SRT6b in saline, BQ123 and BMS182874 pretreated male Sprague-Dawley rats, using a radioactive microsphere technique. SRT6b (100 ng, ICV) produced a transient increase (40%) in blood pressure at 5 min followed by a sustained decrease (-42%) at 30 and 60 min in control rats. Total peripheral resistance and heart rate were not significantly altered. Cardiac output increased (16%) at 5 min and decreased 30 and 60 min following SRT6b administration. Central venous pressure was not affected by SRT6b. Regional blood flow and vascular resistance did not change at 5 min following administration of SRT6b. However, a significant decrease in blood flow to the brain, heart, kidneys, liver, spleen, gastrointestinal tract and mesentery and pancreas was observed 30 and 60 min following administration of SRT6b in control (saline treated) rats. Pretreatment with ETA selective receptor antagonists, BQ123 (10 micrograms, ICV) or BMS182874 (50 micrograms, ICV) significantly attenuated the pressor and depressor effects of centrally administered SRT6b. SRT6b induced decrease in blood flow was completely blocked by pretreatment with BQ123 or BMS182874. ET-1 (100 ng, ICV) produced an increase followed by a decrease similar to SRT6b. Reserpine (5 mg/kg, IP) pretreatment attenuated the cardiovascular effects of ET-1. Role of sympathetic nervous system was determined by measuring splanchnic nerve activity. SRT6b when administered in the lateral cerebral ventricle did not produce any significant effect at 5 min, however, a significant decrease in sympathetic nerve activity was observed 30 min after its administration. It is concluded that centrally administered SRT6b produces significant changes in systematic and regional blood circulation which can be completely blocked by ETA receptor antagonist. The cardiovascular effects of centrally administered SRT6b appear to be mediated through the sympathetic nervous system.
Read full abstract