The spatiotemporal evolution characteristics of precipitation infiltration recharge during the past 50 years are discussed in this paper. This research is significant for groundwater resource rational utilization. The distribution of precipitation infiltration recharge coefficients in the 1960s, 1980s, and 2000s can be obtained using unsaturated zone lithology and depth to water table at different times. The amount of precipitation infiltration recharge in the 1960s, 1980s, and 2000s can be calculated using precipitation infiltration recharge coefficients and precipitation data from the Ministry of Water Resources of China. Results show that the change in the precipitation infiltration recharge coefficient is closely related to the water table decrease. From the 1960s to the 1980s, the precipitation infiltration recharge coefficient clearly increased in all units. From the 1980s to the 2000s, the value slightly increased in the ancient Yellow River alluvial-proluvial and eastern alluvial-marine plains and slightly decreased in the piedmont alluvial-proluvial and central alluvial-lacustrine plains. The piedmont alluvial-proluvial and ancient Yellow River alluvial-proluvial plains exhibited a large precipitation infiltration recharge coefficient for the coarse lithology. The amounts of precipitation infiltration recharges were 16.23×109 (1960s), 19.11×109 (1980s), and 19.42×109 m3/a (2000s). The amount of precipitation infiltration recharge increased from the 1960s to the 1980s then decreased from the 1980s to the 2000s in the piedmont alluvial-proluvial and the central alluvial-lacustrine plains. However, this value increased from the 1960s to the 2000s in the ancient Yellow River alluvial-proluvial and eastern alluvial-marine plains.