Children with chronic tic disorders (CTD), including Tourette syndrome (TS), have significantly reduced serum 25-hydroxyvitamin D [25(OH)D]. While vitamin D3 supplementation (VDS) may reduce tic symptoms in these children, its mechanism is unclear. The study aim was to investigate the effects and mechanisms of vitamin D deficiency (VDD) and VDS on TS model behavior. Forty 5-week-old male Sprague-Dawley rats were randomly divided into (n = 10 each): control, TS model, TS model with VDD (TS + VDD), or TS model with VDS (TS + VDS; two intramuscular injections of 20,000IU/200g) groups. The VDD model was diet-induced (0IU vitamin D/kg); the TS model was iminodipropionitrile (IDPN)-induced. All groups were tested for behavior, serum and striatal 25(OH)D and dopamine (DA), mRNA expressions of vitamin D receptor (VDR), glial cell line-derived neurotrophic factor (GDNF), protooncogene tyrosine-protein kinase receptor Ret (c-Ret), and DA D1 (DRD1) and D2 (DRD2) receptor genes in the striatum. TS + VDD had higher behavior activity scores throughout, and higher total behavior score at day 21 compared with TS model. In contrast, day 21 TS + VDS stereotyped behavior scores and total scores were lower than TS model. The serum 25(OH)D in TS + VDD was < 20ng/mL, and lower than control. Striatal DA of TS was lower than control. Compared with TS model, striatal DA of TS + VDD was lower, while in TS + VDS it was higher than TS model. Furthermore, mRNA expression of VDR, GDNF, and c-Ret genes decreased in TS model, and GDNF expression decreased more in TS + VDD, while TS + VDS had higher GDNF and c-Ret expressions. VDD aggravates, and VDS ameliorates tic-like behavior in an IDPN-induced model. VDS may upregulate GDNF/c-Retsignaling activity through VDR, reversing the striatal DA decrease and alleviating tic-like behavior.