The tensile strength of volcanic rock exerts control over several key volcanic processes, including fragmentation and magma chamber rupture. Despite its importance, there is a paucity of laboratory data for the tensile strength of volcanic rocks, leading to an incomplete understanding of the influence of microstructural parameters, such as pore size and shape (factors that vary widely for volcanic rocks), on their tensile strength. To circumvent problems associated with the variability of natural samples, we provide here a systematic study in which we use elastic damage mechanics code “Rock Failure Process Analysis” to perform numerical experiments to better understand the influence of porosity, pore diameter, pore aspect ratio, and pore orientation on the tensile strength of volcanic rocks. We find that porosity and pore diameter exert a first-order control on the tensile strength of volcanic rocks, and that pore aspect ratio and orientation also influence tensile strength. Tensile strength is reduced by up to a factor of two as porosity is increased from 0.05 to 0.35 or as pore diameter is increased from 1 to 2 mm. Small, but systematic, reductions in tensile strength are observed as the angle between the loading direction and the major axis of an elliptical pore is increased from 0 to 90°. The influence of pore aspect ratio (the ratio of the minor to major axis of an ellipse) depends on the pore angle: when the pore angle is 0°, a decrease in pore aspect ratio, from 1 (a circle) to 0.2, increases the tensile strength, whereas the same decrease in pore aspect ratio does not substantially change the tensile strength when the pore angle is 90°. These latter numerical experiments show that the tensile strength of volcanic rocks can be anisotropic. Our numerical data are in broad agreement with new and compiled experimental data for the tensile strength of volcanic rocks. One of the goals of this contribution is to provide better constrained constitutive models for the tensile strength of volcanic rocks for use in volcano modelling. To this end, we present a series of theoretical and semi-empirical constitutive models that can be used to determine the tensile strength of volcanic rocks, and highlight how tensile strength estimations can influence predictions of magma overpressures and assessments of the volume and radius of a magma chamber.