AbstractA strong version of Levine′s decomposition of continuity leads to the result that a closed graph weakly continuous function into a rim-compact space is continuous. This result implies a closed graph theorem: every almost continuous closed graph function into a strongly locally compact space is continuous. An open problem of Shwu-Yeng T. Lin and Y.-F. Lin asks if every almost continuous closed graph function from a Baire space to a second countable space is necessarily continuous. This question is answered in the negative by an example.