ABSTRACT Nanostructured energetic materials have attracted considerable research interests during the past decades because of their improved performances in thermal decomposition and combustion. In this work, a porous nanosheet structure of dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate (TKX-50) has been fabricated by a facile ice templating strategy, which is based on the self-assembly of TKX-50 during rapid recrystallization. Thermal decomposition properties were determined by differential scanning calorimetry/thermogravimetry (DSC/TG) and TG-FTIR analyses. The laser-ignited and constant-volume combustions and mechanical sensitivity were conducted. As-prepared TKX-50 mainly presents porous nanosheets (NS-TKX-50) assembled by the secondary nanoparticles. NS-TKX-50 is typical of mesoporous materials with high specific surface area and pore volume. Compared with raw material, NS-TKX-50 exhibits lower thermal decomposition peak temperature and higher active energy. In thermal decomposition process, a great deal of gaseous products have been generated in a very narrow temperature range. These thermal decomposition features suggest a quick energy-release rate and high energy output. Contrary to incomplete combustion of raw material, NS-TKX-50 shows high-efficiency and self-sustaining laser-ignited combustion feature with a drastically decreased ignition threshold. And its pressurization rate and peak pressure are remarkably increased. Sensitivity results confirmed the visibly reduced impact and friction sensitivity of NS-TKX-50.
Read full abstract