Diffusion and homogenization in “iron (5 μm–nickel (5 μm or 50 nm)” powder systems of various degrees of dispersion during sintering (900 and 1000°C), as well as spark plasma sintering, are investigated using the Matano–Boltzmann method. Calculated diffusivities in pairs of micron powders sintering without applying pressure (900°C, 6 h) and by the spark plasma method (900°C, 5 min) in these systems are equal to 7 × 10–10 cm2/s. It is shown that the use of nanodispersed nickel powder in diffusion pairs based on finely dispersed iron powder promotes a twofold increase in diffusivity at 900°C in contrast to the pair with the microdispersed nickel powder. Constants in the Ivensen sintering kinetics equation are calculated for the “iron–nickel” powder systems, by which the factors activating sintering of these systems are established. The dependences of the structural phase composition and physicomechanical properties of carbide steels of the Fe(base)–14 wt % Ni–8 wt % TiC system on the sintering temperature in range t = 900–1200°C and structure dispersity and homogeneity are determined. The dependences of the grain size, porosity, hardness, microhardness, fracture toughness, and bending ultimate strength on the sintering temperature are shown. Dependences of tribotechnical properties on the degree of homogeneity of the solid solution and volume of the phase transformation of metastable austenite into deformation martensite during abrasive friction turn out similar for carbide steels and diamond tools based on carbide steel. Optimal values of the variation coefficient of the nickel concentration in austenite and carbide steels of the same chemical composition but with different degrees of dispersity, which provide the maximal volume of the austenite decomposition and high values of the diamond-tool grinding coefficient, turn out equal to 5 in both systems, but the sintering parameters are different. It is shown that the physicomechanical properties of the studied systems depend on the structure porosity and dispersity, while tribotechnical properties depend on the structural homogeneity of steels.
Read full abstract