To tackle the challenge of ground-level ozone pollution, this study proposed a potential catalytic design approach for ozone decomposition using Cu-Mn bimetallic oxide. This approach is grounded in an understanding of the intrinsic reactivity for catalyst and incorporates a novel potassium-driven low-temperature oxidation process for catalyst synthesis. The research highlights the creation of a highly reactive Cu-Mn oxide phase with extensive defect coverage, leading to significantly increased reaction rates. It also identifies the MnO2(100) facet as a crucial active phase, where oxygen vacancies simultaneously enhance O3 adsorption and decomposition, albeit with a concurrent risk of O2 poisoning due to the stabilization of adsorbed O2. Crucially, the incorporation of Cu offsets the effects of oxygen vacancies, influencing conversion rates and lessening O2 poisoning. The synergistic interplay between Cu and oxygen vacancies elevates the performance of the defect-rich Cu-Mn oxide catalyst. By combining computational and experimental methods, this study not only advances the understanding of the Cu-Mn oxide system for ozone decomposition but also contributes valuable insights into developing more efficient catalysts to mitigate ozone pollution.