Cover crops grown alone or in association can take up different amounts of phosphorus (P) from the soil and accumulate it in different P-forms in plant tissue. Cover crop residues with a higher content of readily decomposed forms may release P more quickly for the next onion crop. The aim of this study was to evaluate the release of P forms from residues of single and mixed cover crops in agroecological no-till onion (Allium cepa L.) production. The experiment was conducted in Ituporanga, Santa Catarina (SC), Brazil, in an Inceptisol, with the following treatments: weeds, black oat (Avena sativa L.), rye (Secale cereale L.), oilseed radish (Raphanus sativus L.), oilseed radish + black oat, and oilseed radish + rye. Cover crops were sown in April 2013. In July 2013, plant shoots were cut close to the soil surface and part of the material was placed in litterbags. The bags were placed on the soil surface and residues were collected at 0, 15, and 45 days after deposition (DAD). Residues were dried and ground and P in the plant tissue was determined through chemical fractionation. The release of P contained in the tissue of cover crops depends not only on total P content in the tissue, but also on the accumulation of P forms and the quality of the residue in decomposition. The highest accumulation of P in cover crops occurred in the soluble inorganic P fraction, which is the fraction of fastest release in plants. Black oat had the highest initial release rate of soluble inorganic P, which became equal to the release rate of other cover crop residues at 45 DAD. Weeds released only half the amount of soluble inorganic P in the same period, despite accumulating a considerable amount of P in their biomass. The mixtures of oilseed radish + rye and oilseed radish + black oat showed higher release of P associated with RNA at 45 DAD in comparison to the single treatments.