In this paper, I propose new models of quantum information processing using the exchange interaction in physical systems. The partial SWAP operator that can be realized using the exchange interaction is used as the underlying resource for defining models of quantum computation, quantum communication, quantum memory and decoherence-free subspaces. Given the non-commutativity of these operators (for adjacent operators operating on a common qubit), a number of quantum states and entanglement patters can be obtained. This zoo of states can be classified, due to the parity constraints and permutation symmetry of the states, into invariant subspaces that are used for the definition of some of the applications in this paper.