Detecting small targets in infrared images presents significant challenges due to their tiny size and complex backgrounds, making this task a hotspot for research. Traditional methods rely on assumption-based modeling and manual design, struggling to handle the variability of real-world scenarios. Although convolutional neural networks (CNNs) increase robustness to diverse scenes with a data-driven paradigm, many CNN-based methods are insufficient in capturing fine-grained details necessary for small targets and are less effective during multi-scale feature fusion. To overcome these challenges, we propose the novel Wide-scale Gated Fully Fusion Network (WGFFNet) in this article, which contributes to infrared small-target detection (IRSTD). WGFFNet uses a classic encoder–decoder structure, where the designed stepped fusion block (SFB) embedded in the feature extraction stage captures finer local context across multiple scales during encoding, and along the decoding path, the multi-level features are progressively integrated by a Fully Gated Interaction (FGI) Module to enhance feature representation. The inclusion of a boundary difference loss further optimizes the edge details of targets. We conducted comprehensive experiments on two public infrared small-target datasets: SIRST-V2 and IRSTD-1k. Quantitative and qualitative results demonstrate that our WGFFNet outperforms representative methods when considering various evaluation metrics together, achieving an improved detection performance and computational efficiency for detecting small targets in infrared images.
Read full abstract