This paper studied the impact of moisture on the correlated characteristics of the condenser bushings oil-paper insulation system. The oil-impregnated paper samples underwent accelerated thermal aging at 130 °C after preparation at different initial moisture contents (1%, 3%, 5% and 7%). All the samples were extracted periodically for the measurement of the moisture content, the degree of polymerization (DP) and frequency domain dielectric spectroscopy (FDS). Next, the measurement results of samples were compared to the related research results of transformer oil-paper insulation, offering a theoretical basis of the parameter analysis. The obtained results show that the moisture fluctuation amplitude can reflect the different initial moisture contents of insulating paper and the mass ratio of oil and paper has little impact on the moisture content fluctuation pattern in oil-paper but has a great impact on moisture fluctuation amplitude; reduction of DP presents an accelerating trend with the increase of initial moisture content, and the aging rate of test samples is higher under low moisture content but lower under high moisture content compared to the insulation paper in transformers. Two obvious “deceleration zones” appeared in the dielectric spectrum with the decrease of frequency, and not only does the integral value of dielectric dissipation factor (tan δ) reflect the aging degree, but it reflects the moisture content in solid insulation. These types of research in this paper can be applied to evaluate the condition of humidified insulation and the aging state of solid insulation for condenser bushings.