This paper deals with the time-domain numerical calculation of electromagnetic (EM) fields in linearly dispersive media described by multipole Debye model. The frequency-dependent finite-difference time-domain (FD2TD) method is applied to solve Debye equations using convolution integrals or by direct integration. Original formulations of FD2TD methods are proposed using different approaches. In the first approach based on the solution of convolution equations, the exponential analytical behavior of the convolution integrand permits an efficient recursive FD2TD solution. In the second approach, derived by circuit theory, the transient equations are directly solved in time domain by the FD2TD method. A comparative analysis of several FD2TD methods in terms of stability, dispersion, computational time and memory is carried out.
Read full abstract