Decline in the amount of dead wood deteriorates habitats for saproxylic organisms globally. This could be compensated by restoration, but it is poorly understood how created dead wood corresponds to the habitat requirements of saproxylic species. Using a large-scale field experiment of 30 restoration sites across Finland, we studied the long-term (5–15 years) effects of dead wood creation on wood-decomposing fungi (polypores) in Norway spruce and Scots pine dominated forests. All studied conservation areas had been used for timber production prior to conservation. The average amount and diversity of woody debris was higher on the restoration treatments than on the non-restored controls. Altogether, 56 polypore species were recorded. Restoration treatments had 1.4 and 8 times more species and observations than controls. Eight red-listed polypore species were observed, six on the restored plots (four only from the created dead wood) and two on the controls. Species composition of polypore assemblages differed between the restoration and control treatments, as well as between the spruce- and pine-dominated forests. Following restoration, temporal changes in the polypore assemblages were clear but only partly related to dead wood creation. Unlike previous short-term studies, our results show that dead wood creation by felling and ring-barking trees benefits not only common but also indicator and red-listed polypore species; indeed, 15 years after restoration all red-listed species occurred on created dead wood. As some red-listed species occurred solely on naturally fallen trees five to ten years after restoration, created dead wood alone cannot substitute for natural dead wood.