Automatically determining redshifts of galaxies is very important for astronomical research on large samples, such as large-scale structure of cosmological significance. Galaxies are generally divided into normal galaxies and active galaxies, and the spectra of active galaxies mostly have more obvious emission lines. In the present paper, the authors present a novel method to determine spectral redshifts of active galaxies rapidly based on wavelet transformation mainly, and it does not need to extract line information accurately. This method includes the following steps: Firstly, we denoised a spectrum to be processed; Secondly, the low-frequency spectrum was extracted based on wavelet transform, and then we could get the residual spectrum through the denoised spectrum subtracting the low-frequency spectrum; Thirdly, the authors calculated the standard deviation of the residual spectrum and determined a threshold value T, then retained the wavelength set whose corresponding flux was greater than T; Fourthly, according to the wavelength form of all the standard lines, we calculated all the candidate redshifts; Finally, utilizing the density estimation method based on Parzen window, we determined the redshift point with maximum density, and the average value of its neighborhood would be the final redshift of this spectrum. The experiments on simulated data and real data from SDSS-DR7 show that this method is robust and its correct rate is encouraging. And it can be expected to be applied in the project of LAMOST.
Read full abstract