Light plays a key role in the development of biological rhythms in fish. Previous research on Senegal sole has revealed that both spawning rhythms and larval development are strongly influenced by lighting conditions. However, hatching rhythms and the effect of light during incubation are as yet unexplored. Therefore, the aim of this study was to investigate the impact of the light spectrum and photoperiod on Solea senegalensis eggs and larvae until day 7 post hatching (dph). To this end, eggs were collected immediately after spawning during the night and exposed to continuous light (LL), continuous darkness (DD), or light-dark (LD) 12L:12D cycles of white light (LDW), blue light (LDB; λpeak = 463 nm), or red light (LDR; λpeak = 685 nm). Eggs exposed to LDB had the highest hatching rate (94.5% ± 1.9%), whereas LDR and DD showed the lowest hatching rate (54.4% ± 3.9% and 48.4% ± 4.2%, respectively). Under LD conditions, the hatching rhythm peaked by the end of the dark phase, but was advanced in LDB (zeitgeber time 8 [ZT8]; ZT0 representing the onset of darkness) in relation to LDW and LDR (ZT11). Under DD conditions, the same rhythm persisted, although with lower amplitude, whereas under LL the hatching rhythm split into two peaks (ZT8 and ZT13). From dph 4 onwards, larvae under LDB showed the best growth and quickest development (advanced eye pigmentation, mouth opening, and pectoral fins), whereas larvae under LDR and DD had the poorest performance. These results reveal that developmental rhythms at the egg stage are tightly controlled by light characteristics, underlining the importance of reproducing their natural underwater photoenvironment (LD cycles of blue wavelengths) during incubation and early larvae development of fish. (Author correspondence: borja@um.es)
Read full abstract