This work introduces a user-friendly, cloud-based software framework for conducting Artificial Intelligence (AI) analyses of medical images. The framework allows users to deploy AI-based workflows by customizing software and hardware dependencies. The components of our software framework include the Python-native Computational Environment for Radiological Research (pyCERR) platform for radiological image processing, Cancer Genomics Cloud (CGC) for accessing hardware resources and user management utilities for accessing images from data repositories and installing AI models and their dependencies. GNU-GPL copyright pyCERR was ported to Python from MATLAB-based CERR to enable researchers to organize, access, and transform metadata from high dimensional, multi-modal datasets to build cloud-compatible workflows for AI modeling in radiation therapy and medical image analysis. pyCERR provides an extensible data structure to accommodate metadata from commonly used medical imaging file formats and a viewer to allow for multi-modal visualization. Analysis modules are provided to facilitate cloud-compatible AI-based workflows for image segmentation, radiomics, DCE MRI analysis, radiotherapy dose-volume histogram-based features, and normal tissue complication and tumor control models for radiotherapy. Image processing utilities are provided to help train and infer convolutional neural network-based models for image segmentation, registration and transformation. The framework allows for round-trip analysis of imaging data, enabling users to apply AI models to their images on CGC and retrieve and review results on their local machine without requiring local installation of specialized software or GPU hardware. The deployed AI models can be accessed using APIs provided by CGC, enabling their use in a variety of programming languages. In summary, the presented framework facilitates end-to-end radiological image analysis and reproducible research, including pulling data from sources, training or inferring from an AI model, utilities for data management, visualization, and simplified access to image metadata.
Read full abstract