This paper presents the results of an experimental investigation undertaken to evaluate different purging solutions to enhance the removal of multiple heavy metals, particularly chromium, nickel, and cadmium, from a low buffering clay, specifically kaolin, during electrokinetic remediation. Experiments were conducted on kaolin spiked with Cr(VI), Ni(II), and Cd(II) in concentrations of 1,000, 500, and 250 mg/kg, respectively, which simulate typical electroplating waste contamination. A total of five different tests were performed to investigate the effect of different electrode purging solutions on the electrokinetic remedial efficiency. A constant DC voltage gradient of 1 V/cm was applied for all the tests. The removal of heavy metals from the soil using tap water as the purging solution was very low. When 1 M acetic acid was used as the purging solution in the cathode, the removal of chromium, nickel, and cadmium was increased to 20, 19, and 13%, respectively. Using 0.1 M ethylene diamine tetraacetic acid as the purging solution in the cathode, 83% of the initial Cr was removed; however, the nickel and cadmium removal was very low. A sequentially enhanced electrokinetic remediation approach involving the use of water as a purging solution at both the anode and cathode initially, followed by the use of acetic acid as the cathode purging solution and a NaOH alkaline solution as the anode purging solution was tested. This sequential approach resulted in a maximum removal of chromium, nickel, and cadmium of 68–71, 71–73, and 87–94%, respectively. This study shows that the sequential use of appropriate electrode purging solutions, rather than a single electrode purging solution, is necessary to remediate multiple heavy metals in soils using electrokinetics.