Renewable-based sources can be interconnected through power electronic converters and connected with local loads and energy storage devices to form a microgrid. Nowadays, DC microgrids are gaining more popularity due to their higher efficiency and reliability as compared to AC microgrid systems. The DC Microgrid has power electronics converters between the DC loads and renewable-based energy sources. The power converters controlled with an efficient control algorithm for maintaining stable DC bus voltage in DC microgrids under various operating modes is a challenging task for researchers. With an aim to address the above-mentioned issues, this study focuses on the DC link voltage enhancement of a DC Microgrid system consisting of PV, DFIG-based wind energy conversion system (WECS), and battery Energy Storage System (ESS). To elevate PV output voltage and minimize the oscillations in DC link voltage, a high-gain Luo converter with Cascaded Fuzzy Logic Controller (CFLC) is proposed. Droop control with virtual inertia and damping control is proposed for DFIG-based WECS to provide inertia support. Artificial Neural Network (ANN) based droop control is utilised to regulate the ESS’s State of Charge (SOC). The effectiveness of the proposed converter and its control algorithms for maintaining stable DC bus link voltage has been analysed using MATLAB/Simulink and experimentally validated using a prototype model and FPGA Spartan 6E controllers.
Read full abstract