Plasma treatment of polymeric materials is a cost-effective and efficient technique to modify the surface and change the constituent unit configuration. This research investigates the effects of argon DC glow discharge plasma on pure and DR1 dye-loaded polyamide 6 polymer films and stabilization of dye on the surface. Plasma breaks some bonds and activates the surface through creating reactive structures such as free radical sites on the surface and increases tertiary amides on the surface of polymer. Besides, this process alters surface topographical characteristics and conformation of azobenzene dye which are effective on the durability of the dye on the surface. Plasma causes interactions of the dye with the polymer and immobilizes the dye on the polymer. On the other hand, these interactions lead to changes in the dye's optical and geometric isomeric activity and stability. This work studies the chemical and morphological changes of polyamide 6 by plasma with AFM and spectroscopic methods. Furthermore, the aging of nylon 6 films loaded with DR1 dye is measured, and the conformational changes of the dye are investigated. Plasma stabilizes the dye on the polymer surface through making changes of chemical and physical properties on the surface components.