Wireless charger for electric vehicles (EVs) is an offline application and it needs power factor correction (PFC) function, which usually consists of a front-end boost PFC and a cascaded dc–dc converter. Z-source resonant converter (ZSRC), a single-stage solution with low cost and high efficiency, was proposed for EV wireless charger lately. The Z-source capacitors in the ZSRC are designed to absorb the double-line frequency ripple in this single-phase application. Sinusoidal charging, which allows the double-line frequency ripple propagate to the output, is another solution aiming at reducing the bulky capacitors. Recently, a comparison of low-frequency (120 Hz) sinusoidal charging and dc charging shows a negligible impact on Li-ion batteries’ performance. Therefore, the ZSRC's capacitor, the biggest component, can be reduced dramatically from millifarad to several microfarads with a sinusoidal charging technique, which features the ZSRC high power density. Also, it keeps the Z-source's benefit of boost ability and being immune to shoot-through problems. In this paper, the sinusoidal charging behavior for the ZSRC is modeled, and a control scheme that has both PFC function and load regulation for sinusoidal charging is proposed. This control scheme can pass IEC61000-3-2 Class A criterion. Experimental results based on a 1-kW prototype with 20 cm air gap between the primary and secondary side are presented to illustrate the proposed control scheme.
Read full abstract