The combined application of organic material and phosphorus fertilizer is an effective method to enhance phosphorus use efficiency for plant growth. This is partly because the presence of water-soluble organic matter (WSOM) derived from different organic materials can enhance the level of available phosphorus in the soil; however, it is poorly understood how this level varies with changes in the WSOM status (i.e., decomposed, dissolved, and retained) in the soil depending on WSOM types. This study aimed to (i) understand how changes in the WSOM status enhances the available phosphorus level in the soil, and (ii) determine the WSOM type that contributes to such enhancement. The incubation test showed that fractions of 73%–92% and 8%–27% of WSOM-derived organic carbon were retained and dissolved, respectively, at the beginning of incubation, while 31%–45% was decomposed during the incubation period. The WSOM derived from cattle manure compost (CM) and sewage sludge compost (SSC) that was initially retained was maintained until the late stage of the incubation test, whereas that derived from hydrothermal decomposed liquid fertilizer (HDLF) was rapidly desorbed during the first 14 days of the incubation period. The available phosphorus level was higher under the combined application of CM- and SSC-derived WSOM than under the single phosphorus application throughout the incubation period, while it was high only during the first 3 days of incubation under the application of HDLF-derived WSOM. The amounts of retained organic carbon at each sampling point during the incubation period compared to those at the beginning were positively and linearly correlated to the available phosphorus levels that were enhanced by the WSOM present in the soil. This study for the first time provides quantitative experimental evidence that 1) the longer the WSOM continues to be retained, the higher the amount of available phosphorus remaining in the soil, and 2) the available phosphorus level decreases with WSOM sorption or decomposition. Furthermore, it was shown that highly humified WSOM has a great potential for the maintenance of higher available phosphorus levels. This study provides the insight that a combined application of highly humified organic materials with a chemical fertilizer is necessary for not only cost effective but also sustainable fertilization design.