Recently, interest in the development of functional foods enriched with bioactive components has increased. Dairy products supplemented with tea extracts known for their health-promoting properties are good examples of such products. However, most of the scientific studies and applications focus on green tea. The present study was established to estimate the effect of Pu-erh tea supplementation on the viability of starter microorganisms and selected physico-chemical and sensory properties of probiotic ABT-yoghurt. ABT-yoghurts (Lactobacillus acidophilus La-5, Bifidobacterium animalis ssp. lactis BB-12, Streptococcus thermophilus) were produced from cow’s milk with 0%, 5%, 10% or 15% (v/v) of Pu-erh tea infusion added before the fermentation stage. The products obtained were subjected to the following analyses one day after production (colour profile) and after 7, 14 and 21 days of cold storage: ferric reducing antioxidant power (FRAP) and anti-radical power (ARP) measured against DPPH radical, titratable acidity, pH, texture parameters (back extrusion test), viability of starter cultures and sensory quality (hedonic scale experiment). Pu-erh tea supplementation significantly enhanced the antioxidant potential of probiotic yoghurts as a 3–6.5-fold increase in FRAP and a 10–24-fold increase in ARP values were observed in comparison to plain ABT-yoghurt. Pu-erh tea slightly enhanced the viability of L. acidophilus and reduced the pH of probiotic yoghurts. Higher concentrations of Pu-erh tea caused decreased firmness and consistency while cohesiveness and index of viscosity remained unaffected upon supplementation. The addition of Pu-erh tea infusion modified the colour and sensory properties of the probiotic yoghurts but the sensory quality of the tea yoghurts was rated lower when compared to the plain one. Among all tea yoghurts, the one with 15% Pu-erh tea additive received the highest scores in sensory assessment. Pu-erh tea may be successfully applied as a functional additive to probiotic yoghurts, signifi- cantly enhancing the antioxidant properties of fermented milk and ensuring a high rate of starter bacteria viability during storage. However, the level of fortification must be carefully chosen as some doses negatively influence texture parameters and sensory quality.
Read full abstract