Mild cognitive impairment (MCI) and preclinical MCI (e.g., subjective cognitive decline, SCD) are considered risk states of dementia, such as Alzheimer's Disease (AD). However, it is challenging to accurately predict conversion from normal cognition (NC) to MCI, which is important for early detection and intervention. Since neuropathological changes may have occurred in the brain many years before clinical AD, we sought to detect the subtle brain changes in the pre-MCI stage using a deep-learning method based on structural Magnetic Resonance Imaging (MRI). To discover early structural neuroimaging changes that differentiate between stable and progressive cognitive status, and to establish a predictive model for MCI conversion. We first created a unique deep-learning framework for pre-AD conversion prediction through the Alzheimer's Disease Neuroimaging Initiative-1 (ADNI-1) database (n = 845). Then, we tested the model on ADNI-2 (n = 321, followed 3 years) and our private study (n = 109), the China Longitudinal Aging Study (CLAS), to validate the rationality for pre-MCI conversion prediction. The CLAS is a 7-year community-based cohort study in Shanghai. Our framework consisted of two steps: 1) a single-ROI-based network (SRNet) for identifying informative regions in the brain, and 2) a multi-ROI-based network (MRNet) for pre-AD conversion prediction. We then utilized these "ROI-based deep learning" neural networks to create a composite score using advanced algorithm-building. We coined this score as the Progressive Index (PI), which serves as a metric for assessing the propensity of AD conversion. Ultimately, we employed the PI to gauge its predictive capability for MCI conversion in both ADNI-2 and CLAS datasets. We primarily utilized baseline T1-weighted MRI scans to identify the most discriminative brain regions and subsequently developed the PI in both training and validation datasets. We compared the PI across different cognitive groups and conducted logistic regression models along with their AUCs, adjusting for education level, gender, neuropsychological test scores, and the presence of comorbid conditions. We trained the SRNet and MRNet using 845 subjects from ADNI-1 with baseline MRI data, in which AD and progressive MCI (converting to AD within 3 years) patients were considered as positive samples, while NC and stable MCI (remaining stable for 3 years) subjects were considered as negative samples. The convolutional neural networks identified the top 10 regions of interest (ROIs) for distinguishing progressive from stable cases. These key brain regions included the hippocampus, amygdala, temporal lobe, insula, and anterior cerebellum. A total of 321 subjects from ADNI-2, including 209 NC (18 progressive NC (pNC), 113 stable NC (sNC), and 78 remaining NC (rNC)) and 112 SCD (11 pSCD, 5 sSCD, and 96 rSCD), as well as 109 subjects from CLAS, including 17 sNC, 16 pNC, 52 sSCD and 24 pSCD participated in the test set, separately. We found that the PI score effectively sorted all subjects by their stages (stable vs progressive). Furthermore, the PI score demonstrated excellent discrimination between the two outcomes in the CLAS data(p<0.001), even after controlling for age, gender, education level, depression symptoms, anxiety symptoms, somatic diseases, and baseline MoCA score. Better performance for prediction progression to MCI in CLAS was obtained when the PI score was combined with clinical measures (AUC=0.812; 95 %CI: 0.725-0.900). This study effectively predicted the progression to MCI among order individuals at normal cognition state by deep learning algorithm with MRI scans. Exploring the key brain alterations during the very early stages, specifically the transition from NC to MCI, based on deep learning methods holds significant potential for further research and contributes to a deeper understanding of disease mechanisms.
Read full abstract