This paper presents a cognitive flexible-bandwidth optical interconnect architecture for datacom networks. The proposed architecture leverages silicon photonic reconfigurable all-to-all switch fabrics interconnecting top-of-rack switches arranged in a Hyper-X-like topology with a cognitive control plane for optical reconfiguration by self-supervised learning. The proposed approach makes use of a clustering algorithm to learn the traffic patterns from historical traces. We developed a heuristic algorithm for optimizing the intra-pod connectivity graph for each identified traffic pattern. Further, to mitigate the scalability issue induced by frequent clustering operations, we parameterized the learned traffic patterns by a support vector machine classifier. The classifier is trained offline by self-labeled data to enable the classification of traffic matrices during online operations, thereby facilitating cognitive reconfiguration decision making. The simulation results show that compared with a static all-to-all interconnection, the proposed approach can improve the throughput by up to1.62×while reducing the end-to-end packet latency and flow completion time by up to3.84×and20×, respectively.
Read full abstract