Fake news is a major threat to global democracy resulting in diminished trust in government, journalism and civil society. The public popularity of social media and social networks has caused a contagion of fake news where conspiracy theories, disinformation and extreme views flourish. Detection and mitigation of fake news is one of the fundamental problems of our times and has attracted widespread attention. While fact checking websites such as snopes, politifact and major companies such as Google, Facebook, and Twitter have taken preliminary steps towards addressing fake news, much more remains to be done. As an interdisciplinary topic, various facets of fake news have been studied by communities as diverse as machine learning, databases, journalism, political science and many more. The objective of this tutorial is two-fold. First, we wish to familiarize the database community with the efforts by other communities on combating fake news. We provide a panoramic view of the state-of-the-art of research on various aspects including detection, propagation, mitigation, and intervention of fake news. Next, we provide a concise and intuitive summary of prior research by the database community and discuss how it could be used to counteract fake news. The tutorial covers research from areas such as data integration, truth discovery and fusion, probabilistic databases, knowledge graphs and crowdsourcing from the lens of fake news. Effective tools for addressing fake news could only be built by leveraging the synergistic relationship between database and other research communities. We hope that our tutorial provides an impetus towards such synthesis of ideas and the creation of new ones.