Physical world integration with cyber world opens the opportunity of creating smart environments; this new paradigm is called the Internet of Things (IoT). Communication between humans and objects has been extended into those between objects and objects. Industrial IoT (IIoT) takes benefits of IoT communications in business applications focusing in interoperability between machines (i.e., IIoT is a subset from the IoT). Number of daily life things and objects connected to the Internet has been in increasing fashion, which makes the IoT be the dynamic network of networks. Challenges such as heterogeneity, dynamicity, velocity, and volume of data, make IoT services produce inconsistent, inaccurate, incomplete, and incorrect results, which are critical for many applications especially in IIoT (e.g., health-care, smart transportation, wearable, finance, industry, etc.). Discovering, searching, and sharing data and resources reveal 40% of IoT benefits to cover almost industrial applications. Enabling real-time data analysis, knowledge extraction, and search techniques based on Information Communication Technologies (ICT), such as data fusion, machine learning, big data, cloud computing, blockchain, etc., can reduce and control IoT and leverage its value. This research presents a comprehensive review to study state-of-the-art challenges and recommended technologies for enabling data analysis and search in the future IoT presenting a framework for ICT integration in IoT layers. This paper surveys current IoT search engines (IoTSEs) and presents two case studies to reflect promising enhancements on intelligence and smartness of IoT applications due to ICT integration.