ContextMany engineering organizations are reimplementing and extending deep neural networks from the research community. We describe this process as deep learning model reengineering. Deep learning model reengineering — reusing, replicating, adapting, and enhancing state-of-the-art deep learning approaches — is challenging for reasons including under-documented reference models, changing requirements, and the cost of implementation and testing.ObjectivePrior work has characterized the challenges of deep learning model development, but as yet we know little about the deep learning model reengineering process and its common challenges. Prior work has examined DL systems from a “product” view, examining defects from projects regardless of the engineers’ purpose. Our study is focused on reengineering activities from a “process” view, and focuses on engineers specifically engaged in the reengineering process.MethodOur goal is to understand the characteristics and challenges of deep learning model reengineering. We conducted a mixed-methods case study of this phenomenon, focusing on the context of computer vision. Our results draw from two data sources: defects reported in open-source reeengineering projects, and interviews conducted with practitioners and the leaders of a reengineering team. From the defect data source, we analyzed 348 defects from 27 open-source deep learning projects. Meanwhile, our reengineering team replicated 7 deep learning models over two years; we interviewed 2 open-source contributors, 4 practitioners, and 6 reengineering team leaders to understand their experiences.ResultsOur results describe how deep learning-based computer vision techniques are reengineered, quantitatively analyze the distribution of defects in this process, and qualitatively discuss challenges and practices. We found that most defects (58%) are reported by re-users, and that reproducibility-related defects tend to be discovered during training (68% of them are). Our analysis shows that most environment defects (88%) are interface defects, and most environment defects (46%) are caused by API defects. We found that training defects have diverse symptoms and root causes. We identified four main challenges in the DL reengineering process: model operationalization, performance debugging, portability of DL operations, and customized data pipeline. Integrating our quantitative and qualitative data, we propose a novel reengineering workflow.ConclusionsOur findings inform several conclusion, including: standardizing model reengineering practices, developing validation tools to support model reengineering, automated support beyond manual model reengineering, and measuring additional unknown aspects of model reengineering.