Data-driven based deep learing has become a key research direction in the field of artificial intelligence. Abundant training data is a guarantee for building efficient and accurate models. However, due to the privacy protection policy, research institutions are often limited to obtain a large number of training data, which would lead to a lack of training sets circumstance. In this paper, a mixed-type data generation model based on generative adversarial networks is proposed to synthesize fake data that have the same distribution with the real data, so as to supplement the real data and increase the number of available samples. The model first pre-trains the autoencoder which maps given dataset into a low-dimensional continuous space. Then, the generator constructed in the low-dimension space is obtained by training it adversarially with discriminator constructed in the original space. Since the constructed discriminator not only consider the loss of the continuous attributes but also the labeled attributes, the generator nets formed by the generator and the decoder can effectively learn the intrinsic distribution of the mixed data. We evaluate the proposed method both in the independent distribution of the attribute and in the relationship of the attributes, and the experiment results show that the proposed generate method has a better performance in preserve the intrinsic distribution compared with other generation algorithms based on deep learning.