Although the microgravity (μ-g) environment that astronauts encounter during spaceflight can cause severe acute bone loss, the molecular mechanism of this bone loss remains unclear. To investigate the gravity-response proteins involved in bone metabolism, it is important to comprehensively determine which proteins exhibit differential abundance associated with mechanical stimuli. However, comprehensive proteomic analysis using small bone samples is difficult because protein extraction in mineralized bone tissue is inefficient. Here, we established a high-sensitivity analysis system for mouse bone proteins using data-independent acquisition mass spectrometry. This system successfully detected 40 proteins in the femoral diaphysis showing differential abundance between mice raised in a μ-g environment, where the bone mass was reduced by gravity unloading, and mice raised in an artificial 1-gravity environment on the International Space Station. Additionally, 22 proteins, including noncollagenous bone matrix proteins, showed similar abundance between the two groups in the mandible, where bone mass was unaltered due to mastication stimuli, suggesting that these proteins are responsive to mechanical stimuli. One of these proteins, SPARCL1, is suggested to promote osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand. We expect these findings to lead to new insights into the mechanisms of bone metabolism induced by mechanical stimuli. SignificanceWe aimed to investigate the gravity-response proteins involved in bone metabolism. To this end, we established a comprehensive analysis system for mouse bone proteins using data-independent acquisition mass spectrometry, which is particularly useful in comprehensively analyzing the bone proteome using small sample volumes. In addition, a comprehensive proteomic analysis of the femoral diaphysis and mandible, which exhibit different degrees of bone loss in mice raised on the International Space Station, identified proteins that respond to mechanical stimuli. SPARCL1, a mechanical stimulus-responsive protein, was consequently suggested to be involved in osteoclast differentiation associated with bone remodeling. Our findings represent an important step toward elucidating the molecular mechanism of bone metabolism induced by mechanical stimuli.
Read full abstract