Rare neuromuscular diseases (NMDs) encompass various disorders of the nervous system and skeletal muscles, and present intricate challenges in diagnosis, treatment, and research due to their low prevalence and often diverse multisystemic manifestations. Leveraging collected patient data for secondary use and analysis holds promise for advancing medical understanding in this field. However, a certain level of data quality is a prerequisite for the methods that can be used to analyze data. The heterogeneous nature of NMDs poses a significant obstacle to the creation of standardized documentation, as there are still many challenges to accurate diagnosis and many discrepancies in the diagnostic process between different countries. This paper proposes the development of an information model tailored to NMDs, aiming to augment visibility, address deficiencies in documentation, and facilitate comprehensive analysis and research endeavors. By providing a structured framework, this model seeks to propel advancements in understanding and managing NMD, ultimately benefiting patients and healthcare providers worldwide.