This paper presents a novel diagonal recurrent neural network hybrid controller based on the shared memory of real-time database structure. The controller uses Data Engine (DE) technology, through the establishment of a unified and standardized software architecture and real-time database in different control stations, effectively solves many problems caused by technical standard, communication protocol, and programming language in actual industrial application: the advanced control algorithm and control system co-debugging difficulties, algorithm implementation and update inefficiency, and high development and operation and maintenance costs effectively fill the current technical gap. More importantly, the control algorithm development uses a unified visual graphics configuration programming environment, effectively solving the problem of integrated control of heterogeneous devices; and has the advantages of intuitive configuration and transparent data processing process, reducing the difficulty of the advanced control algorithms debugging in engineering applications. In this paper, the application of a neural network hybrid controller based on DE in motor speed measurement and control system shows that the system has excellent control characteristics and anti-disturbance ability, and provides an integrated method for neural network control algorithm in a practical industrial control system, which is the major contribution of this article.
Read full abstract