This work presents the development of an uncertainty-aware health monitoring system for helicopter turbine engines, focusing on improving operational availability and reducing maintenance costs. We address the critical issue of uncertainty quantification in data-driven fault detection and prognostics, essential for increasing system reliability. The project follows an iterative development cycle, incorporating multiple techniques for data processing, such as polynomial feature generation and data cleansing, and model development, including ensemble learning and artificial neural networks. Evaluation is performed using K-fold and group-fold cross-validation. The final solution consists of a cascaded ensemble learning model combining bagged linear regression built on polynomial features and random forest. This model demonstrates robust performance, achieving a test score of 0.955719 and a validation score of 0.886953, showcasing the effectiveness of uncertainty-aware machine learning methods in health monitoring systems.
Read full abstract