Abstract

As one of the hot issues of concerns during modern social development, the wastewater treatment process is acknowledged to be a process with complex biochemical reactions and susceptible to an external environment, featuring strong nonlinear and time correlation characteristics, which are difficult for traditional mechanism-based models to tackle. For many classical data-driven fault detection methods, a complete retraining process is necessary to monitor every new fault, and most of the current neural network-based strategies rarely achieve satisfactory monitoring accuracy or robustness either. Giving full consideration to the aforementioned problems, this article takes advantage of position encoding, residual connection, and multihead attention mechanism embedded in the Transformer structure to establish an effective and efficient wastewater treatment process fault detection model, where offline modeling and online monitoring are performed successively to achieve accurate detection of the faults. In the experimental part, the advantages of the proposed method are strongly verified through the simulation monitoring of 27 faults on the benchmark simulation model 1 (BSM1), where the false alarm rate (FAR) and miss alarm rate (MAR) of the established method are proved to be significantly lower than those of the compared state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.