Agriculture plays a crucial role in the global economy and social stability, and accurate crop yield prediction is essential for rational planting planning and decision-making. This study focuses on crop yield Time-Series Data prediction. Considering the crucial significance of agriculture in the global economy and social stability and the importance of accurate crop yield prediction for rational planting planning and decision-making, this research uses a dataset containing multiple crops, multiple regions, and data over many years to deeply explore the relationships between climatic factors (average rainfall, average temperature) and agricultural inputs (pesticide usage) and crop yield. Multiple hybrid machine learning models such as Linear Regression, Random Forest, Gradient Boost, XGBoost, KNN, Decision Tree, and Bagging Regressor are adopted for yield prediction. After evaluation, it is found that the Random Forest and Bagging Regressor models perform excellently in predicting crop yield with high accuracy and low error.As agricultural data becomes increasingly rich and time-series prediction techniques continue to evolve, the results of this study contribute to advancing the practical application of crop yield prediction in agricultural production management. The integration of time-series analysis allows for more dynamic, data-driven decision-making, enhancing the accuracy and reliability of crop yield forecasts over time.
Read full abstract