Vehicular Ad hoc NETworks (VANET) has been well studied for a long time as a means to exchange information among moving vehicles. As vehicular networks do not always have connected paths, vehicular networks can be regarded as a kind of delay-tolerant networks (DTNs) when the density of vehicles is not high enough. In this case, packet delivery ratio degrades significantly so that reliability of networks as an information infrastructure is hardly held. Past studies such as SADV (Static-node Assisted Data dissemination protocol for Vehicular networks) and RDV (Reliable Distance-Vector routing) showed that the assistance of low-cost unwired static nodes located at intersections, which work as routers to provide distance-vector or link-state routing functions, significantly improves the communication performance. However, they still have problems: SADV does not provide high-enough delivery ratio and RDV suffers from traffic concentration on the shortest paths. In this paper, we propose MP-RDV (Multi-Path RDV) by extending RDV with multiple paths utilization to improve performance against both of those problems. In addition, we apply a delay routing metric, which is one of the major metrics in this field, to RDV to compare performance with the traffic-volume metric, which is a built-in metric of RDV. Evaluation results show that MP-RDV achieves high load-balancing performance, larger network capacity, lower delivery delay, and higher fault tolerance against topology changes compared to RDV. As for routing metrics, we showed that the traffic-volume metric is better than the delay one in RDV because delay measurement is less stable against traffic fluctuation.
Read full abstract