Despite being central to the implementation of conservation policies, the usefulness of the International Union for Conservation of Nature (IUCN) Red List of Threatened Species is hampered by the 14% of species classified as data-deficient (DD) because information to evaluate these species' extinction risk was lacking when they were last assessed or because assessors did not appropriately account for uncertainty. Robust methods are needed to identify which DD species are more likely to be reclassified in one of the data-sufficient IUCN Red List categories. We devised a reproducible method to help red-list assessors prioritize reassessment of DD species and tested it with 6887 DD species of mammals, reptiles, amphibians, fishes, and Odonata (dragonflies and damselflies). For each DD species in these groups, we calculated its probability of being classified in a data-sufficient category if reassessed today from covariates measuring available knowledge (e.g., number of occurrence records or published articles available), knowledge proxies (e.g., remoteness of the range), and species characteristics (e.g., nocturnality); calculated change in such probability since last assessment from the increase in available knowledge (e.g., new occurrence records); and determined whether the species might qualify as threatened based on recent rate of habitat loss determined from global land-cover maps. We identified 1907 species with a probability of being reassessed in a data-sufficient category of >0.5; 624 species for which this probability increased by >0.25 since last assessment; and 77 species that could be reassessed as near threatened or threatened based on habitat loss. Combining these 3 elements, our results provided a list of species likely to be data-sufficient such that the comprehensiveness and representativeness of the IUCN Red List can be improved.
Read full abstract