Facial expression is the best evidence of our emotions. Its automatic detection and recognition are key for robotics, medicine, healthcare, education, psychology, sociology, marketing, security, entertainment, and many other areas. Experiments in the lab environments achieve high performance. However, in real-world scenarios, it is challenging. Deep learning techniques based on convolutional neural networks (CNNs) have shown great potential. Most of the research is exclusively model-centric, searching for better algorithms to improve recognition. However, progress is insufficient. Despite being the main resource for automatic learning, few works focus on improving the quality of datasets. We propose a novel data-centric method to tackle misclassification, a problem commonly encountered in facial image datasets. The strategy is to progressively refine the dataset by successive training of a CNN model that is fixed. Each training uses the facial images corresponding to the correct predictions of the previous training, allowing the model to capture more distinctive features of each class of facial expression. After the last training, the model performs automatic reclassification of the whole dataset. Unlike other similar work, our method avoids modifying, deleting, or augmenting facial images. Experimental results on three representative datasets proved the effectiveness of the proposed method, improving the validation accuracy by 20.45%, 14.47%, and 39.66%, for FER2013, NHFI, and AffectNet, respectively. The recognition rates on the reclassified versions of these datasets are 86.71%, 70.44%, and 89.17% and become state-of-the-art performance.