Management In a recent GE/Accenture report, surveys show that 81% of senior executives believe that big data analytics is one of the top three corporate priorities for the oil and gas industry through 2018. A striking finding was the sense of urgency felt by respondents about implementing data analytics solutions. This trend is driven primarily by current market conditions that are pushing companies to find new ways to become more efficient in exploration and production. In the quest by operators to become more efficient, many new initiatives are currently under way within organizations. Driven primarily by central excellence teams, objectives are to leverage both low- and high-resolution data (high-resolution data defined as data collected in seconds/minutes) to make better decisions quickly vs. a traditional approach of evaluating trends over a 12- or 24-hour period or after the fact using old reporting methods. Decision makers are convinced that if other industries such as airlines and consumer Internet players such as Amazon and Expedia can leverage big data to drive efficiency and growth, the same should and can apply to the oil and gas industry. Actionable Insights and Lower Costs If their assumptions are correct, leveraging hidden insights from mining data can help enterprise users make better, smarter decisions and reduce operational costs. However, as the industry pays closer attention to these initiatives, it is getting exposed to some harsh realities, including big data being uncharted territory for information technology (IT) and a company’s business side. Efforts to improve may actually lead to worse instead of better decision making if conducted using the wrong approaches. Further complicating the data analytics issue, most IT organizations are traditionally more familiar with process automation projects where business needs are known and stable. In contrast, data needs are context-dependent, dynamic, and may be unarticulated or even unknown sometimes. Solving this challenge requires anthropological skills that are in short supply in today’s IT world. Unfortunately, traditional requirements gathering fails when assessing data needs since the needs are fast-changing and diverse. Additionally, today’s machine data quality (especially on historical data) lacks accuracy, precision, completeness, and consistency for real-time analytics. As a practical matter, less than 50% of today’s enterprise users find information from corporate sources to be in a usable format. This problem will only get worse as the number of information sources, uses, and users continues to increase.