This article studies the boundary element solution of two-dimensional sine-Gordon (SG) equation using continuous linear elements approximation. Non-linear and in-homogenous terms are converted to the boundary by the dual reciprocity method and a predictor–corrector scheme is employed to eliminate the non-linearity. The procedure developed in this paper, is applied to various problems involving line and ring solitons where considered in references [Argyris J, Haase M, Heinrich JC. Finite element approximation to two-dimensional sine-Gordon solitons. Comput Methods Appl Mech Eng 1991;86:1–26; Bratsos AG. An explicit numerical scheme for the sine-Gordon equation in 2+1 dimensions. Appl Numer Anal Comput Math 2005;2(2):189–211, Bratsos AG. A modified predictor–corrector scheme for the two-dimensional sine-Gordon equation. Numer Algorithms 2006;43:295–308; Bratsos AG. The solution of the two-dimensional sine-Gordon equation using the method of lines. J Comput Appl Math 2007;206:251–77; Bratsos AG. A third order numerical scheme for the two-dimensional sine-Gordon equation. Math Comput Simul 2007;76:271–8; Christiansen PL, Lomdahl PS. Numerical solutions of 2+1 dimensional sine-Gordon solitons. Physica D: Nonlinear Phenom 1981;2(3):482–94; Djidjeli K, Price WG, Twizell EH. Numerical solutions of a damped sine-Gordon equation in two space variables. J Eng Math 1995;29:347–69; Dehghan M, Mirzaei D. The dual reciprocity boundary element method (DRBEM) for two-dimensional sine-Gordon equation. Comput Methods Appl Mech Eng 2008;197:476–86]. Using continuous linear elements approximation produces more accurate results than constant ones. By using this approach all cases associated to SG equation, which exist in literature, are investigated.
Read full abstract